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Abstract— Vehicle platooning improves traffic efficiency and
fuel economy by allowing vehicles to travel together with
shorter inter-vehicle distances. Meanwhile, shorter distances
also impose increased demand for stricter safety management,
including degradation and failure mode effects management.
This paper proposes a controller mode and reference governor
(CMRG) scheme for constraint and failure management in
vehicle platoons. The CMRG is an add-on supervisor for multi-
mode controlled systems that monitors and, when necessary,
adjusts the control modes and reference inputs to enforce
constraints. We show by simulations that with the application
of CMRG, safety constraints can be satisfactorily enforced and
sensor and/or actuator degradations/failures can be managed
in vehicle platoon systems.

I. INTRODUCTION

A vehicle platoon (see Fig. 1) is a string of vehicles travel-
ing together with a harmonized speed and pre-specified inter-
vehicle distances [1]. Vehicle platooning has been shown to
be an effective way to improve traffic efficiency and fuel
economy [2], [3], and has drawn extensive attention from
researchers to address various challenges, including platoon
formation [4]–[6], string stability [7]–[9], heterogeneity [10],
[11], interaction topology [12], [13] and delay effects [14],
[15], etc.

The major benefits of vehicle platooning are attributed to
the fact that platooning allows vehicles to travel together with
shorter inter-vehicle distances, which can increase road ca-
pacity [16] and reduce air resistance for the follower vehicles,
thus improving their fuel economy [2]. Since the vehicles are
traveling at shorter inter-vehicle distances, safety, in terms of
not having collisions, is a major concern.

Many safety requirements, including collision avoidance,
can be imposed as constraints during the system operation.
Reference governors are add-on, supervisory schemes for
closed-loop systems that handle constraints by monitoring,
and modifying when necessary, the commands/reference
inputs to the system [17].

In this paper, we consider an extension of the reference
governor scheme, referred to as the controller mode and
reference governor (CMRG), which can manipulate both
the control modes and reference inputs to the system to
enforce constraints, as well as to mitigate degradation/failure
effects when they occur. In particular, we apply the CMRG
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to vehicle platoons to handle safety constraints and sensor
and actuator degradations/failures.

The contributions of this paper are as follows: 1) We
propose a CMRG scheme for a class of systems with
multiple control modes and stochastic disturbance inputs, to
probabilistically enforce constraints. 2) We illustrate the use
of the proposed CMRG for vehicle platoon constraints and
sensor and actuator degradation/failure effects management.

This paper is organized as follows: Section II defines
the class of systems to be considered. Section III describes
constraints and models to represent sensor and actuator
degradations/failures. Section IV presents the CMRG algo-
rithm. In Section V, we introduce in detail the application
of CMRG to constraint and failure management in vehicle
platooning. Simulation results are reported in Section VI to
illustrate the effectiveness of CMRG. Finally, conclusions are
given in Section VII.

II. MULTI-MODE CONTROLLED SYSTEM

In this paper, we consider systems represented by the
following discrete-time model,

x(k + 1) = Ax(k) +Buu(k) +Bww(k), (1a)
y(k) = Cx(k) +Duu(k) +Dww(k), (1b)

where x(k) ∈ Rnx represents the system state at the discrete
time instant k ∈ Z≥0, u(k) ∈ Rnu represents the control
input at time k, w(k) ∈ Rnw represents a disturbance input
at time k, and y(k) ∈ Rny represents the system output at
time k. We assume the disturbance input w(k) takes values
randomly and independently based on a normal distribution
with mean 0 and covariance W , i.e., w(k) ∼ N (0,W ) for
each k ∈ Z≥0.

We assume that a set of controllers has been defined to
stabilize the system to desired steady states. They have the
form,

u(k) = F j x̂(k) +Gjv(k), j = 0, 1, ..., nm, (2)

where x̂(k) represents a measurement/estimate of the system
state x(k), and v(k) ∈ Rnv represents the reference input
which determines the desired steady state of the system. In
particular, we assume x̂(k) = x(k) + x̃(k), where x̃(k) ∼
N (0,Σ0) is a normally-distributed random state measure-
ment/estimate error, independent of w(k). For instance, such
an error can be due to the application of a state observer
such as a Kalman filter.



Substituting (2) into (1), we obtain

x(k + 1) = Ājx(k) + B̄jv(k) + wjx(k), (3a)

y(k) = C̄jx(k) + D̄jv(k) + wjy(k), (3b)

where Āj = A + BuF
j , B̄j = BuG

j , C̄j = C + DuF
j ,

D̄j = DuG
j , and wjx ∼ N (0,W j

x), wjy ∼ N (0,W j
y ), in

which W j
x = BuF

jΣ0(BuF
j)> + BwWB>w and W j

y =
DuF

jΣ0(DuF
j)> +DwWD>w .

The variable j = 0, 1, ..., nm in (2) identifies the control
mode of the system, which can be selected to handle con-
straints as well as sensor and actuator degradations. The pairs
(F j , Gj) are assumed to be designed such that 1) the closed-
loop dynamics (3a) are stable, and 2) the steady-state output
corresponding to v(k) is same for every j = 0, 1, ..., nm.
Specifically, this means C̄j(Inx

−Āj)−1B̄j+D̄j are identical
for all j.

III. CONSTRAINTS AND FAILURES

A. Constraints

Constraints may be imposed on system states/outputs to
represent safety requirements such as collision avoidance, or
be imposed on control inputs to represent, for instance, actu-
ator capability limits. In this paper, we consider constraints
that can be written as

y(k) ∈ Y =
{
y ∈ Rny : y ≤ ylimit

}
. (4)

Note that (4) can represent both state/output and input
constraints by properly choosing the matrix pair (C,Du). For
a system modeled as (1) with stochastic inputs, it is typical
[18], [19] to enforce the constraint (4) probabilistically as
follows:

P
(
y(k) ∈ Y

)
≥ γ. (5)

This is because: On the one hand, it is in general not
possible to enforce (4) deterministically due to the presence
of the Gaussian uncertainties w(k) ∼ N (0,W ) and x̃(k) ∼
N (0,Σ0), which can take arbitrarily large values with pos-
itive probabilities. On the other hand, the parameter γ ∈
(0, 1), representing a probabilistic guarantee for constraint
enforcement, can be used as a tuning parameter to balance
the tradeoff between performance and robustness, reducing
the conservatism of the design.

B. Degradations and failures

In addition to constraints, the management of degradations
and failures is another important task, especially for safety
critical systems. Two typical types of failures for control
systems are sensor failures and actuator failures.

In this paper, we model a sensor degradation/failure as a
change in the measurement covariance Σ0. In particular, we
consider

x̃(k) ∼ N (0,Σp0), (6)

where the set of positive semi-definite matrices Σp0, p =
0, ..., np, represents the measurement covariance for nor-
mal case (p = 0) and for pre-specified different degrada-
tion/failure cases (p = 1, ..., np). We remark that modeling

sensor failure as a change of Σ0 is reasonable as in many
safety critical applications, the state measurement x̂(k) used
in the control law (2) is obtained by fusing the measurements
of multiple, and at times redundant, sensors to reduce the
measurement covariance. Then, a failure in one or more of
the sensors typically results in an increase in the measure-
ment covariance.

On the other hand, a degradation/failure in an actuator
typically causes its capability in terms of providing force or
power to decrease, or in other words, causes its capability
limits to change. On the basis of the fact that input constraints
representing such limits can be incorporated in (4), we model
an actuator degradation/failure by considering

y(k) ∈ Yq =
{
y ∈ Rny : y ≤ yqlimit

}
, (7)

where the set of output limits yqlimit, q = 0, ..., nq , represents
the constraints (including the actuator limits) for normal case
(q = 0) and for pre-specified different failure cases (q =
1, ..., nq).

Furthermore, we note that failures in many other sub-
systems are often handled by limited operating strategy,
which restricts the actuator authority (e.g., limp home throttle
position, transmission locked in third gear, etc). Such failures
can also be represented by changing control input constraints.

IV. CONTROLLER MODE AND REFERENCE GOVERNOR

The controller mode and reference governor (CMRG) is
a supervisor that manages the control mode j = 0, 1, ..., nm
and the reference input v(k) ∈ Rnv corresponding to the
current status of the system (normal or failure) to enforce
constraints. Its operation is based on a collection of output
admissible sets defined as follows:

ON (j, p, q) =
{

(x0, v) : If x(0) ∼ N (x0,Σ
p
0), v(k) ≡ v,

then P
(
yj(k) ∈ Yq

)
≥ γ for k = 0, 1, ..., N

}
, (8)

where yj(k) is the output of the system (3) corresponding to
the control mode j, and N ∈ N∪{∞} is a specified planning
horizon. Due to the fact that the construction of ON (j, p, q)
requires evaluation of P

(
yj(k) ∈ Yq

)
, which involves

integration of the density function of a random vector over
a polyhedral set and is in general computationally difficult
[20], we consider the following subset of ON (j, p, q),

ÕN (j, p, q) =
{

(x0, v) : If x̂(0) = x0, v(k) ≡ v,
then ŷj(k) ∈ Yq ∼ Pj,p(k) for k = 0, 1, ..., N

}
, (9)

where ŷj(k) is the output of the following disturbance-free
system

x̂(k + 1) = Āj x̂(k) + B̄jv(k),

ŷ(k) = C̄j x̂(k) + D̄jv(k), (10)

and Yq ∼ Pj,p(k) =
{
y : y+ỹ ∈ Yq for all ỹ ∈ Pj,p(k)

}
is

the P(ontryagin)-difference of the sets Yq and Pj,p(k), with
Pj,p(k) =

{
y : y>(Υj,p(k))−1y ≤ F−1(γ, ny)

}
being the



γ-level confidence ellipsoid, in which Υj,p(k) is the output
of the following system

Ξ(k + 1) = Āj Ξ(k) (Āj)> +BuF
jΣp0(BuF

j)> +BwWB>w ,

Υ(k) = C̄j Ξ(k) (C̄j)> +DuF
jΣp0(DuF

j)> +DwWD>w ,
(11)

with the initial condition Ξ(0) = Ξp0, and F−1(γ, ny) is
the inverse of the cumulative distribution function of the χ2

distribution with ny degrees of freedom evaluated at γ.
We remark that for the polyhedral set Yq defined in (7),

Yq ∼ Pj,p(k) can be computed as [21]

Yq ∼ Pj,p(k) = (12){
y : yi ≤

(
yqlimit

)
i
−
√
F−1(γ, ny)

(
Υj,p(k)

)
ii
, i = 1, ..., ny

}
.

Based on (10)-(12), it is easy to see that the set ÕN (j, p, q) is
characterized by a set of linear inequalities acting on the pair
(x0, v). The numerical procedure to construct ÕN (j, p, q) is
similar to Section 3.2 of [19], and is omitted here.

The CMRG operates based on the following Algorithm 1.
In Algorithm 1, v̂(k) denotes the original reference input at
time k, which may represent the maneuver command from
a human operator or be generated by a higher-level planning
algorithm without accounting for constraints or failures, and
‖ · ‖S =

√
(·)>S(·) with S being a positive definite matrix.

After the control mode and reference pair (j(k), v(k)) is
determined by CMRG, the system is switched to the mode
j = j(k) for one step with the reference input v(k).

Algorithm 1: CMRG Operation

1 Input Current sensor and actuator status
(
p(k), q(k)

)
and state measurement x̂(k).

2 Output Current control mode j(k) and reference
v(k).

3 Function
(
j(k), v(k)

)
= CMRG

(
p(k), q(k), x̂(k)

)
4 Solve: minv0 ‖v0 − v̂(k)‖2S subject to

(x̂(k), v0) ∈ ÕN
(
0, p(k), q(k)

)
;

5 if solution exists then
6 return (0, v0).
7 else
8 V ← ∅;
9 for j = 1, 2, ..., nm do

10 Solve: minvj ‖vj − v̂(k)‖2S subject to
(x̂(k), vj) ∈ ÕN

(
j, p(k), q(k)

)
;

11 If solution exists, then V ← V ∪ {vj};
12 end for
13 Find vj

∗
= arg minvj∈V ‖vj − v̂(k)‖2S and

return (j∗, vj
∗
).

14 end if

When CMRG cannot find a feasible pair (j(k), v(k)) after
searching over all available control modes j = 0, 1, ..., nm
(which may result from the occurrence of a very large
disturbance input realization), as a fail-safe, CMRG relaxes
the constraint yqlimit to yqlimit +λ with λ ≥ 0 as an optimization

variable representing the degree of constraint violation. Cor-
respondingly, the constraint (x̂(k), vj) ∈ ÕN

(
j, p(k), q(k)

)
is relaxed by replacing each of the inequality (12) with

yi ≤
(
yqlimit

)
i
+ λ−

√
F−1(γ, ny)

(
Υj,p(k)

)
ii
. (13)

After that, CMRG solves for the pair (j∗, vj
∗
) with the

minimum violation λ.
Theoretical properties of the CMRG defined by Algo-

rithm 1, including probabilistic constraint enforcement and
convergence of v(k) to constant v̂(k), can be character-
ized following similar steps as in the stochastic reference
governor in [19]. Rigorous statements and proofs of these
properties will be pursued in our future work.

V. CONSTRAINT AND FAILURE MANAGEMENT IN
VEHICLE PLATOONING

We apply the proposed controller mode and reference
governor (CMRG) scheme to constraint and failure man-
agement in vehicle platooning (illustrated in Fig. 1). We
first introduce the models to represent the longitudinal dy-
namics of a vehicle platoon and the control law to realize
car-following behavior. We then introduce the models that
represent constraints and sensor/actuator failures. After that,
we discuss the incorporation of these models into the CMRG
scheme to achieve constraint and failure management.

A. Car-following dynamics and control

Fig. 1. Vehicle platooning illustration.

In a vehicle platoon, each vehicle i = 1, ..., nv follows its
preceding vehicle i− 1 according to the following dynamics

ḣi(t) = vi−1(t)− vi(t), (14a)
v̇i(t) = ui(t), (14b)

where hi denotes vehicle i’s headway distance to vehicle
i−1, vi denotes vehicle i’s longitudinal speed, and ui denotes
its longitudinal acceleration and is the controlled signal.

In particular, we consider the following controller for ui,

ui(t) = ûi(k∆t), (15)

for t ∈ [k∆t, (k + 1)∆t), where

ûi(t) = αi
(
ĥi(t)− hri (t)

)
+ βi

(
v̂i−1(t)− vi(t)

)
, (16)

in which ĥi is a measurement of the headway distance hi,
v̂i−1 is a measurement of the preceding vehicle’s speed vi−1,
the gain αi is to match the measured headway distance ĥi
to a reference headway distance hri , and the gain βi is to
match the ego vehicle’s speed vi to the measured speed of
the preceding vehicle v̂i−1. In particular, we assume ĥi(t) =
hi(t)+h̃i(t) and v̂i−1(t) = vi−1(t)+ ṽi−1(t), where h̃i(t) ∼
N (0, whi ) and ṽi−1(t) ∼ N (0, wvi ) are normally distributed



random measurement errors. Note that the piecewise constant
control signal (15) accounts for the fact that measurements
are taken at sample time instants t = k∆t, k ∈ Z≥0. Note
also that we assume each vehicle i can measure its own speed
vi(t) perfectly.

Substituting (15) and (16) into (14), we obtain

ḣi(t) = vi−1(t)− vi(t), (17a)

v̇i(t) = αi
(
hi(k∆t)− hri (k∆t)

)
+ βi

(
vi−1(k∆t)− vi(k∆t)

)
+ αih̃i(k∆t) + βiṽi−1(k∆t), (17b)

for t ∈ [k∆t, (k + 1)∆t), k ∈ Z≥0.
Assuming vi−1(t) stays constant over [k∆t, (k + 1)∆t)

and integrating (17), we further obtain

hi(k + 1) =
(
1− ∆t2

2
αi
)
hi(k)−

(
∆t− ∆t2

2
βi
)
vi(k)

+
∆t2

2
αih

r
i (k) +

(
∆t− ∆t2

2
βi
)
vi−1(k)

− ∆t2

2

(
αih̃i(k) + βiṽi−1(k)

)
, (18a)

vi(k + 1) = ∆t αihi(k) + (1−∆t βi)vi(k)−∆t αih
r
i (k)

+ ∆t βivi−1(k) + ∆t
(
αih̃i(k) + βiṽi−1(k)

)
. (18b)

Note that the k and k + 1 in the above expressions denote
the discrete-time instants k∆t and (k + 1)∆t.

In matrix form, the discrete-time dynamics (18) can be
written as

xi(k + 1) = Aixi(k) +Bih
r
i (k) + Φivi−1(k) + Ψiwi(k),

(19)
where xi(k) =

[
hi(k), vi(k)

]>
, wi(k) =

[
h̃i(k), ṽi−1(k)

]>
and

Ai =

[
1− ∆t2

2 αi −∆t+ ∆t2

2 βi
∆t αi 1−∆t βi

]
, Bi =

[
∆t2

2 αi
−∆t αi

]
,

Φi =

[
∆t− ∆t2

2 βi
∆t βi

]
, Ψi =

[
−∆t2

2 αi −∆t2

2 βi
∆t αi ∆t βi

]
. (20)

In principle, the reference headway distance hri , which
determines the steady-state car-following distance as h∗i =
hri , is a design variable. Oftentimes, it is designed as a
function, called a range policy, of the ego vehicle’s steady-
state speed, which is determined by the preceding vehicle’s
speed vi−1, i.e., hri (k) = G

(
vi−1(k)

)
. In this paper, we

consider the following range policy, which is modified from
the range policies proposed in [11], [22],

hri (k) = G
(
vi−1(k)

)
=

hlo 0 ≤ vi−1(k) ≤ vlo,

hlo + vi−1(k)−vlo
vup−vlo

(hup − hlo) vlo ≤ vi−1(k) ≤ vup,

hup vi−1(k) ≥ vup.

(21)

B. Car-following constraints

Two types of constraints are considered in this paper. The
first type is imposed on the headway distance hi(k). On the
one hand, hi(k) should not be too small to avoid front-end
collisions; on the other hand, hi(k) should not be too large to

prevent other cars from cutting in. Specifically, we consider
the following constraints on hi(k),

hmin ≤ hi(k) ≤ hmax. (22)

The second type of constraints represents actuator capability
limits. In particular, we consider the following constraints on
ui(k),

amin ≤ ui(k) = αi
(
hi(k) + h̃i(k)− hri (k)

)
+ βi

(
vi−1(k) + ṽi−1(k)− vi(k)

)
≤ amax. (23)

For instance, the upper bound amax > 0 may represent an
engine power limit and the lower bound amin < 0 may
represent a braking force limit.

In matrix form, the constraints (22) and (23) can be written
as [

hmin

amin

]
≤ yi(k) ≤

[
hmax

amax

]
, (24)

where

yi(k) = Cixi(k) +Dih
r
i (k) + Θivi−1(k) + Ξiwi(k), (25)

Ci =

[
1 0
αi −βi

]
, Di =

[
0
−αi

]
, (26)

Θi =

[
0
βi

]
, Ξi =

[
0 0
αi βi

]
. (27)

As has been discussed in Section III-A, due to the fact
that the disturbance input wi(k) =

[
h̃i(k), ṽi−1(k)

]>
is

modeled as a Gaussian noise and has a positive probability
to take arbitrarily large values, in general, the constraint (24)
cannot be enforced deterministically. Instead, we consider a
probabilistic counterpart of (24) as follows,

P
([

hmin

amin

]
≤ yi(k) ≤

[
hmax

amax

])
≥ γ, (28)

with γ ∈ (0, 1).

C. Sensor and actuator failures

1) Sensor failure: The ĥi and v̂i−1 values used to com-
pute the control (16) are usually derived by fusing the
measurements of multiple sensors, such as radar, lidar and
camera, so that uncertainty can be reduced. In turn, a failure
in one or more of the sensors typically results in an increase
in the uncertainty. Therefore, we model a sensor failure as a
change in the measurement covariance. In particular,

wi(k) =
[
h̃i(k) ṽi−1(k)

]> ∼ N (0,W p
i ), (29)

where W p
i is a positive semi-definite covariance matrix for

each p, with p = 0 corresponding to the normal measure-
ment covariance and p = 1, ..., np corresponding to the
covariances at a pre-specified set of sensor failure cases.
For instance, suppose ĥi and v̂i−1 are derived by fusing the
radar, lidar and camera measurements. Then, depending on
the state of health of each of the three sensors, there are in
total 8 cases, including 1 normal case, and np = 7 failure
cases.



2) Actuator failure: As introduced in Section V-B, the
bounds amax and amin on ui represent engine/braking system
capability limits. We model a degradation/failure in these
systems as a change in the values of these bounds. In
particular,

aqmin ≤ ui(k) ≤ aqmax, (30)

with q = 0 corresponding to the normal actuator limits and
q = 1, ..., nq corresponding to the limits at a pre-specified
set of actuator failure cases.

D. Constraint and failure management using CMRG

As a predictive scheme, CMRG manages constraints rely-
ing on a prediction of the system operating condition over a
horizon.

Let k = 0 denote the current sample time instant and
assume that a measurement v̂i−1(0) of the preceding vehi-
cle’s current speed vi−1(0) has been obtained. We model
the variations in preceding vehicle’s speed over the horizon
stochastically as follows:

vi−1(k) = vi−1(0) + ˜̃vi−1(k), (31)

where ˜̃vi−1(k) ∼ N (0, wpre
i−1).

Then, after augmenting the trivial dynamics vi−1(0) =
vi−1(0) to the model (19), (25) and incorporating multiple
designs for the gains (α, β) in the control law (16) as well
as possible adjustments of the reference signal hri (k), we
obtain the following predictive model

x̄i(k + 1) = Āji x̄i(k) + B̄ji µ+ Ψ̄j
i w̄i(k), (32a)

y(k) = C̄ji x̄i(k) + D̄j
iµ+ Ξ̄ji w̄i(k), (32b)

where x̄i(k) =
[
hi(k), vi−1(0), vi(k)

]>
, w̄i(k) =[

h̃i(k), ṽi−1(k), ˜̃vi−1(k)
]>

, and

Āj
i =

1− ∆t2

2
αj
i ∆t− ∆t2

2
βj
i −∆t+ ∆t2

2
βj
i

0 1 0
∆t αj

i ∆t βj
i 1−∆t βj

i

 , (33)

B̄j
i =

 ∆t2

2
αj
i

0
−∆t αj

i

 , Ψ̄j
i =

−∆t2

2
αj
i −∆t2

2
βj
i ∆t− ∆t2

2
βj
i

0 0 0
∆t αj

i ∆t βj
i ∆t βj

i

 ,
C̄j

i =

[
1 0 0
αj
i βj

i −βj
i

]
, D̄j

i =

[
0
−αj

i

]
, Ξ̄j

i =

[
0 0 0
αj
i βj

i βj
i

]
.

The first two components of the initial condition x̄i(0) =[
hi(0), vi−1(0), vi(0)

]>
are not perfectly measured but can

be estimated using the measurements ĥi(0) and v̂i−1(0)
based on

x̄i(0) ∼ N

( ĥi(0)
v̂i−1(0)
vi(0)

 , [W p
i 0

0 0

])
. (34)

The disturbance input w̄i(k) =
[
h̃i(k), ṽi−1(k), ˜̃vi−1(k)

]>
takes values based on

w̄i(k) ∼ N

(
0,

[
W p
i 0

0 wpre
i−1

])
. (35)

Furthermore, we have replaced the reference headway dis-
tance hri (k) in the model (19) with µ in (32), which is
determined by solving the following optimization problem

min
µ

(
µ−G(v̂i−1(0))

)2
, (36)

where G(·) is the range policy (21), subject to the model (32)
and the following probabilistic constraint for k = 0, 1, ..., N ,

P
([

hmin

aqmin

]
≤ yi(k) ≤

[
hmax

aqmax

])
≥ γ, γ ∈ (0, 1). (37)

Up to this point, we have identified the model (3) in (32),
the sensor failure model (6) in (34), (35) with p = 0, 1, ..., np,
and the actuator failure model (7) in (37) with q = 0, 1, ..., nq
for the specific system of vehicle platooning. Then, we can
apply the CMRG defined by Algorithm 1 to manage the
constraints and failures of this vehicle platooning system.

VI. RESULTS

In this section, we present simulation results of applying
CMRG to constraint and failure management in vehicle
platooning.

A. Model and control parameters

The sampling time ∆t is chosen as 0.1[s]. We consider the
following set of control gain pairs (i.e., control modes) for
(16): (αji , β

j
i ) ∈ {0.5, 1, 1.5, 2} × {0.5, 1, 1.5, 2, 2.5, 3},

where (α0
i , β

0
i ) = (1, 3) is the nominal/default pair. The

parameter values for the range policy (21) are hlo = 2[m],
hup = 30[m], vlo = 0[m/s], and vup = 30[m/s]. The
constraints on the headway distance are set as hmax = 25[m]
and hmin = 16[m]. The normal measurement covariance is
assumed to be W normal

i = diag(0.012, 0.022). The normal
acceleration limits are assumed to be anormal

max = 3[m/s2]
and anormal

min = −3[m/s2]. For the CMRG design, we set
the variance wpre

i−1 that accounts for the variations in the
preceding vehicle’s speed vi−1(k) over the planning horizon
as wpre

i−1 = 0.22. The probabilistic constraint satisfaction
parameter γ is chosen to be 0.99.

B. Sensor failure management in a two-vehicle platoon

The first example that we consider represents the scenario
where a sensor failure occurs to the follower vehicle in a two-
vehicle platoon. It is assumed that the leader vehicle (indexed
by 0) drives with a trapezoidal speed profile v0, which
corresponds to the reference headway distance profile hr1
shown by the blue dash-dotted curve in Fig. 2(a) according
to the range policy hr1 = G(v̂0) in (21). We assume that at
the time instant tf = 12.5[s], a failure occurs to the follower
vehicle’s sensor system, which increases the measurement
covariance from W normal

1 = diag(0.012, 0.022) to W degraded
1 =

diag(0.042, 0.082).
In Fig. 2, we plot the reference µ, headway distance h1

and acceleration u1 profiles of the follower vehicle for the
cases when there is no supervision on its controller mode
and reference (i.e., j ≡ 0 and µ ≡ hr1), when a reference
governor (RG) [19] is used to supervise its reference µ but
provides no supervision on its controller mode (i.e., j ≡ 0),



(a)

(b)

(c)

Fig. 2. (a) Original reference (blue), reference governor (RG) output (red),
and CMRG output (green) profiles of the follower vehicle. (b) Headway
distance profiles of the follower vehicle without supervision on controller
mode and reference (blue), with supervision only on the reference using an
RG (red), and with CMRG. (c) Acceleration profiles of the follower vehicle
without supervision (blue), with RG (red), and with CMRG (green).

and when CMRG is used to supervise both its controller
mode and reference. We remark that the RG algorithm is
similar to Algorithm 1 for CMRG, but does not search
over the ancillary controller modes j = 1, 2, ..., nm for
feasible solutions and switches directly to the fail-safe mode
described in the paragraph around (13) after Step 7.

It can be observed that when no supervision is used, the
headway distance constraints hmax and hmin are violated.
When the reference input µ is adjusted using an RG, the
follower vehicle successfully keeps its headway distance
within the constrained range before the sensor failure occurs.
However, after the sensor failure occurs, not only a large
deviation of µ from hr1 is observed but this large deviation
also causes the follower vehicle to fail to maintain its
headway distance satisfying the lower bound hmin. This is
because when the sensor failure occurs and the measure-
ment covariance increases, the size of the output admissible
set ÕN gets decreased, i.e., fewer state measurement and
reference input pairs are constraint admissible. When the
control gains (α, β) are fixed, to enforce constraints, the
RG either has to significantly adjust the reference value or
cannot identify a feasible solution. In contrast, when CMRG
is used, the follower vehicle successfully maintains constraint
satisfaction both before and after the sensor failure. This is

attributed to the fact that by issuing the follower vehicle
the flexibility of choosing control gain values from a set,
the follower vehicle possesses a larger set of feasible state
measurement and reference input pairs. The CMRG identifies
the optimal pair of controller mode j and reference input µ
in terms of minimizing the deviation of µ from hr1.

Fig. 3 plots the profile of the control gain pairs (α, β)
selected by CMRG. It can be observed that over a short
period after the sensor failure occurs at tf = 12.5[s], CMRG
switches the gain β from its default value 3 to 2, which
facilitates constraint enforcement.

Fig. 3. Control gain profiles of the follower vehicle selected by CMRG.
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Fig. 4. Projections of output admissible sets and vehicle trajectories on
the (h1, µ) plane; (a) corresponds to RG supervision; (b) corresponds to
CMRG supervision.

In Fig. 4, we plot the projections of the output admis-
sible sets ÕN and trajectories of the follower vehicle on
the (h1, µ) plane. The blue and red dashed polygons in
Fig. 4(a) show the sets ÕN used by RG before and after
the sensor failure, respectively, and the dotted curve shows
the trajectory under RG supervision (corresponding to the red
dotted curves in Fig. 2(a-b)). It can be observed that before
the occurrence of sensor failure, the trajectory is maintained
within the ÕN set for normal case (the blue dashed polygon).
However, when the sensor failure occurs, the immediate state
of the follower vehicle (highlighted by the orange point)
falls outside of the ÕN set for failure case (the red dashed
polygon), which has a reduced size compared to the one for
normal case. This causes the failure of the RG in terms of
maintaining constraint satisfaction, as shown in Fig. 2.

In contrast, when CMRG is used, it switches the default
controller mode to a transition mode when failure occurs
(corresponding to the control gain switch shown in Fig. 3).



The ÕN set corresponding to this transition mode (the green
dashed polygon in Fig. 4(b)) contains the vehicle state at the
failure time, implying the existence of a feasible solution
to the reference input µ. Therefore, CMRG satisfactorily
maintains constraint satisfaction. After the trajectory enters
the ÕN set for failure case corresponding to the default
controller mode (the red dashed polygon), CMRG switches
the mode back to default.

C. Sensor and brake failure management in two/three-
vehicle platoons

(a)

(b)

(c)

Fig. 5. (a) Original reference (blue), reference governor (RG) output (red),
and CMRG output (green) profiles of the follower vehicle. (b) Headway
distance profiles of the follower vehicle without supervision on controller
mode and reference (blue), with supervision only on the reference using an
RG (red), and with CMRG. (c) Acceleration profiles of the follower vehicle
without supervision (blue), with RG (red), and with CMRG (green).

We then consider the case where the sensor failure con-
sidered in the first example and a failure of the brake system
occur concurrently at tf = 12.5[s] to the follower vehicle
(vehicle 1). Although such a simultaneous occurrence of
multiple failures may be rare in reality, we consider this
extreme case to test the robustness of our CMRG design.
In particular, we assume that after the brake failure occurs,
the deceleration capability of the vehicle is restricted from
anormal

min = −3[m/s2] to adegraded
min = −1.5[m/s2]. Such a

change in the lower acceleration limit is also illustrated by
the red dashed lines in panel (c) of Figs. 5 and 7.

Similar to Fig. 2, Fig. 5 plots the reference µ1, headway
distance h1 and acceleration u1 profiles of vehicle 1 for with-
out supervision, with RG or CMRG supervisions by blue,

Fig. 6. Control gain profiles of the follower vehicle selected by CMRG.

red and green curves, respectively. Similar to the results in
Fig. 2, when without supervision, the headway distance and
acceleration constraints are both violated. The application of
RG can maintain the headway distance within the constrained
range before failures, but fails to do so after failures occur.
Again, this is due to the fact that only adjusting the reference
inputs does not grant enough flexibility to handle the failure
effects. In contrast, when CMRG is used to supervise both
controller mode and reference input selections, the vehicle
successfully maintains headway distance constraint satisfac-
tion and violates the acceleration constraint only slightly.
Note that such a slight constraint violation is due to the
probabilistic enforcement of constraints in (37). Fig. 6 plots
the profile of the control gain pairs (α, β) selected by CMRG.
The CMRG switches the gain pair (α, β) from their default
values (1, 3) to (0.5, 1) over a short period to compensate
the failure effects.

Lastly, we illustrate the effects of the application of
CMRG for constraint and failure management to the entire
platoon by plotting the responses of the vehicle (vehicle 2)
immediately following the vehicle under sensor and actuator
failures (vehicle 1). We assume that both vehicles use CMRG
to supervise their controller mode and reference input selec-
tions. Note that the speed profile of vehicle 1, v1, determines
the original reference headway distance profile for vehicle 2,
hr2, according to the range policy hr2 = G(v̂1).

The reference µ1, µ2, headway distance h1, h2 and accel-
eration u1, u2 profiles of vehicles 1 and 2 are shown in Fig. 7.
It can be seen that the headway distance constraint for vehicle
2, hmin ≤ h2 ≤ hmax, is maintained. Note also that the lower
acceleration limit for vehicle 2 is anormal

min = −3[m/s2] over
the entire simulation, since we assume that vehicle 2 does
not have a brake failure.

VII. CONCLUSION

In this paper, we have considered the application of a
controller mode and reference governor (CMRG) scheme to
constraint and failure management in vehicle platooning. The
CMRG is an add-on supervisor for multi-mode controlled
systems that monitors and, when necessary, adjusts the con-
trol modes and reference inputs to enforce constraints. Sim-
ulation results have been reported to illustrate that with the
application of CMRG, safety constraints can be satisfactorily
enforced and sensor and/or actuator degradations/failures can
be managed in vehicle platoon systems.



(a)

(b)

(d)

Fig. 7. (a) Original reference and CMRG output profiles of vehicles 1
and 2. (b) Headway distance profiles of vehicles 1 and 2 under CMRG
supervisions. (c) Acceleration profiles of vehicles 1 and 2 under CMRG
supervisions.
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