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Abstract— Goal inference is of great importance for a variety
of applications that involve interaction, coordination, and/or
competition with goal-oriented agents. Typical goal inference
approaches use as many pointwise measurements of the agent’s
trajectory as possible to pursue a most accurate a-posteriori
estimate of the goal. However, taking frequent measurements
may not be preferred in situations where sensing is associated
with high cost (e.g., sensing + perception may involve high
computational/bandwidth cost and sensing may raise security
concerns in privacy-critical/data-sensitive applications). In such
situations, a sensible tradeoff between the information gained
from measurements and the cost associated with sensing actions
is highly desirable. This paper introduces a cost-effective sens-
ing strategy for goal inference tasks based on hybrid Kalman
filtering and model predictive control. Our key insights include:
1) a model predictive approach can be used to predict the
amount of information gained from new measurements over a
horizon and thus to optimize the tradeoff between information
gain and sensing action cost, and 2) the high computational
efficiency of hybrid Kalman filtering can ensure real-time
feasibility of such a model predictive approach. We evaluate
the proposed cost-effective sensing approach in a goal-oriented
task, where we show that compared to standard goal inference
approaches, our approach takes a considerably reduced number
of measurements while not impairing the speed, accuracy, and
reliability of goal inference by taking measurements smartly.

I. INTRODUCTION

Goal inference is an important problem in a variety of
applications that involve interaction, coordination, and/or
competition with goal-oriented agents (e.g., humans). For
instance, in human-robot collaboration or shared-autonomy
tasks where the a-priori uncertain intention of human can
be represented as one of multiple goals, fast and accurate
estimation of human’s goal can inform robot’s behavior and
trajectory planning to improve the overall performance of
human-robot interaction [1]–[3].

Bayesian inference-based approaches [4]–[7] and data-
driven approaches [1], [8] have been widely considered for
goal inference problems. These approaches typically use
as many pointwise measurements of the human’s/robot’s
trajectory as possible, e.g., a measurement at every sam-
ple time instant, to pursue a most accurate a-posteriori
estimate of the goal. However, for certain circumstances,
taking measurements at a high frequency can be costly
or infeasible: 1) Computational cost. When the primary
sensor is a camera or radar/Lidar, taking a measurement
involves running a computer vision algorithm or sampling
and analyzing a point cloud online, which generally entails
intensive computations without advanced hardware [9]. 2)
Assets or material usage cost. In space situational awareness,
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Fig. 1: Human-robot collaboration: an autonomous robot (left)
collaborates with a dexterous robotic manipulator teleoperated by
a human (right). The robot infers the goal of the human operator
to inform motion planning and avoid potential conflicts.

a finite number of assets are used to track multiple orbital
objects, so there is a cost for pointing them in certain direc-
tions. In agricultural applications, taking measurements (e.g.,
tracking herd locations or collecting soil samples) involves
manpower/unmanned system (e.g., quadcopter) employment
and/or material consumption, which can be costly. 3) Time or
bandwidth resource cost. For systems such as those involving
both magnetic sensors and magnetic actuators for which
sensing and control interfere with each other and thus must
operate in a disjunctive manner, sensing takes the total time
resource for both sensing and control [10]. In such situations,
a sensible trade-off between the information gained from new
measurements and the cost associated with sensing actions
is highly desirable.

In this paper, we consider cost-effective sensing in a
goal inference setting. Here, “cost-effective” means taking
as few measurements as possible while not significantly
impairing the speed and accuracy of goal inference. Our
key insights include: 1) a model predictive approach can
be used to predict the amount of information gained from
new measurements over a horizon and thus to optimize the
trade-off between information gain and sensing action cost,
and 2) the high computational efficiency of hybrid Kalman
filtering can ensure real-time feasibility of such a model
predictive approach. Specifically, with these insights, we
first cast the goal inference problem as a hybrid estimation
problem and extend a hybrid Kalman filtering algorithm
for this estimation problem. We then exploit the model
predictive control framework to determine a cost-effective
sensing strategy for the extended hybrid Kalman filter.

We evaluate our cost-effective sensing approach for goal
inference in a goal-oriented task (see Fig. 1), where we
show that compared to baseline goal inference methods, our
approach takes a considerably reduced number of measure-
ments while not impairing the speed, accuracy, and reliability
of goal inference by taking measurements in a smart way.

II. PRELIMINARIES

A. Dynamical model

We consider a general system (e.g., a human body, a robot,
etc.) the dynamics of which can be described by a model as



follows,
xt+1 = fo(xt, ut), (1)

where the subscript t ∈ Z≥0 represents the discrete time
instant, xt ∈ Rnx represents the state of the system (e.g.,
generalized positions, velocities, etc.), ut ∈ Rnu represents
an action input (e.g., generalized forces, etc.), and fo is a
nonlinear function which is continuously differentiable (i.e.,
C1) with respect to xt and ut. We consider a sensing system
(sensor + perception algorithm) that, when triggered, can
(partially or indirectly) measure the state of (1) as follows,

yt = g(xt), (2)

where yt ∈ Rny represents a (partial or indirect) measure-
ment of xt, and g is a nonlinear C1 function.

We assume that this system is controlled by a human
or a higher-level planning algorithm with the control task
represented by a goal, θ̂, which belongs to a specified finite
set of goals,

Θ = {θ1, θ2, . . . , θnθ}, (3)

however, which element of Θ corresponds to the current
actual goal θ̂ is a-priori uncertain. Our objective is to infer θ̂
through measurements yt assuming that the goal affects the
action input as further detailed below.

B. Goal-corresponding policies

We assume that for each goal θ ∈ Θ, the correspond-
ing average/nominal human’s or higher-level planning algo-
rithm’s behavior can be approximated by a (possibly time-
dependent) control policy πθt : Rnx → Rnu , which maps
the current state of the system xt to an action ut. Such a
goal-corresponding policy πθt can be obtained via various
strategies. For instance, when pre-collected demonstrations
corresponding to each goal θ are available, a policy πθt that
most likely explains the behavior of these trajectories may
be learned using goal-conditioned imitation learning [11].
Alternatively, πθt may be constructed as an optimal policy
maximizing a goal-corresponding return [12], e.g.,

πθt ∈ arg max
πt

N∑
t=0

γtlθ(xt, πt(xt)), (4a)

s.t. xt+1 = fo(xt, πt(xt)), (4b)

where N ∈ Z≥0 ∪ {∞} is a horizon length, γ ∈ (0, 1]
is a discount factor, and lθ is a goal-corresponding reward
function which may be learned from demonstrations using,
e.g., inverse reinforcement learning [13]. With the policies
πθt , the evolution of system state xt under a specific goal θ ∈
Θ can be represented by the following closed-loop model:

xt+1 = fθt (xt) = fo(xt, π
θ
t (xt)). (5)

Here, “closed-loop” means that the above model represents
the dynamics of the overall system consisting of (1) and the
human/higher-level planning algorithm with the goal θ.

Remark 1: In some cases, for a goal θ its corresponding
policy πθt may not be unique. For instance, if the policies
are obtained from a data-driven approach, there could exist
multiple policies that explain a given set of demonstrations
equally well. In addition, if the policies are obtained from

model-based optimizations, non-uniqueness of πθt may be
due to non-uniqueness of optimal policies for a given reward
function or due to multiple reward functions for a given
goal to represent different behavioral preferences. In our goal
inference approach based on hybrid Kalman filtering that will
be described in what follows, such non-uniqueness of πθt can
be handled by treating them as separate goals.

III. COST-EFFECTIVE SENSING FOR GOAL INFERENCE

In this section, we cast the goal inference problem as a
hybrid estimation problem, and present our model predictive
approach for cost-effective sensing.

A. Goal inference using a hybrid Kalman filter

In this paper, we adopt a hybrid Kalman filtering algorithm
for the task of goal inference. The original algorithm was
developed in [14] for discrete-time linear hybrid systems. We
extend the algorithm of [14] to nonlinear models following
the general idea of the extended Kalman filter (EKF) [15].
We choose to adopt such a Kalman filter-based approach
because it achieves sufficiently high inference accuracy, as
will be shown in our experiments in Section V, while has
low computational complexity, making it suitable for online
tasks. We now present the algorithm as follows.

At each discrete time instant t, we consider the following
set of linear models with disturbances:

δxθt+1 = Aθt δx
θ
t + wθt , (6a)

δyθt = Cθt δx
θ
t + vθt , (6b)

for each possible goal θ ∈ Θ, where δxθt represents the devi-
ation of the state xt from a nominal state value corresponding
to the goal θ and the time t, xθ,nom

t (i.e., δxθt = xt−xθ,nom
t ),

and δyθt represents the deviation of the output yt from the
nominal output value yθ,nom

t = g(xθ,nom
t ). The matrices Aθt

and Cθt represent local linear approximations of the functions
fθt in (5) and g in (2), respectively. The disturbances wθt
and vθt account for 1) linearization errors, 2) deviations of
the nominal policy πθt from actual human/higher-level plan-
ning algorithm behavior, which may be due to human sub-
optimality and variability or errors of the assumed reward
function in (4) from the actual one of the planning algorithm,
and 3) other disturbance inputs and measurement noises.

There are generally two strategies to determine the lin-
earization matrices Aθt and Cθt . The first strategy is to set
them as the Jacobian matrices of fθt and g at the current state
estimate x̂t. This strategy is frequently adopted in standard
EKF. The second strategy is to consider a nominal/reference
trajectory corresponding to each goal θ ∈ Θ, ξθ,nom =
{xθ,nom

0 , . . . , xθ,nom
N }, and set Aθt and Cθt as the Jacobian

matrices of fθt and g along this nominal trajectory, i.e.,

Aθt =
∂fθt
∂x

∣∣∣∣
x
θ,nom
t

, Cθt =
∂g

∂x

∣∣∣∣
x
θ,nom
t

. (7)

In this paper, we adopt this second strategy. The nominal
trajectory ξθ,nom may be learned as the average trajectory
from a pre-collected set of trajectory data corresponding to
each goal θ ∈ Θ. Alternatively, given initial condition x0, one
may simulate the nominal system (5) and treat the obtained
trajectory as the nominal trajectory ξθ,nom. The reason for



us to adopt this second strategy is as follows: Using the
first strategy, the computation of the linearization matrices
Aθt =

∂fθt
∂x

∣∣
x̂t

and Cθt = ∂g
∂x

∣∣
x̂t

and the filtering process must
be performed in an alternating serial manner [16]. In contrast,
using the second strategy, once the nominal trajectory ξθ,nom

is given, the matrices Aθt and Cθt along this trajectory can
either be pre-computed offline and stored for online use
or be computed in a parallel manner with the filtering
process, because the Aθt and Cθt values do not depend on
the filtering results. Note that the nominal policies πθt are
frequently represented using functional approximators, such
as neural networks, and the output function g in (2) may
be determined by a perception algorithm. In such cases,
the Jacobian matrices of fθt and g do not admit explicit
functional forms and must be evaluated numerically, e.g.,
using a finite-difference method, which entails non-negligible
computational effort. Therefore, the second strategy, which
enables pre- or parallel computation of Aθt and Cθt , improves
online implementation feasibility.

For the disturbances wθt and vθt , we model them as Gaus-
sian random variables with zero mean and known covari-
ances W θ and V θ, i.e., wθt ∼ N (0,W θ) and vθt ∼ N (0, V θ).
The covariance matrices W θ and V θ may be estimated from
trajectory data or manually tuned to achieve satisfactory
inference performance. In principle, the covariances can be
time-varying. We have chosen to consider time-invariant
covariances to relax reliance on big data and tuning effort.

The hybrid Kalman filtering algorithm uses a set of
Kalman filters matched to the different modes of the hybrid
system to calculate a set of estimates of the continuous
state xt, each corresponding to the premise that the system
is in a specific mode. Meanwhile, the algorithm estimates
the probabilities of the modes according to the measurement
residuals of these Kalman filters (i.e., the errors between the
actual measurement and the output values corresponding to
their state estimates). In our setting, modes of the system
correspond to the goals θ ∈ Θ, and thereby mode estima-
tion corresponds to goal inference. Specifically, the hybrid
Kalman filtering algorithm applied to our goal inference
problem is represented by the following equations:

State prediction: x̂θt|t−1 = fθt−1(x̂θt−1|t−1), (8a)

Covariance prediction:

Σθt|t−1 = Aθt−1Σθt−1|t−1(Aθt−1)> +W θ, (8b)

Measurement residual: zθt = yt − g(x̂θt|t−1), (8c)

Residual covariance: Ξθt = Cθt Σθt|t−1(Cθt )> + V θ, (8d)

Kalman gain: Lθt = Σθt|t−1(Cθt )>(Ξθt )
−1, (8e)

State estimate: x̂θt|t = x̂θt|t−1 + Lθt z
θ
t , (8f)

Covariance estimate: Σθt|t = (I − LθtCθt )Σθt|t−1. (8g)

Finally, the algorithm calculates the a-posteriori belief in
each goal θ ∈ Θ conditioned on all measurements up to
time t, yt = {y0, . . . , yt}, according to:

bt|t(θ) = P(θ̂t = θ |yt) =
1

ct
Λθt (z

θ
t ) bt|t−1(θ), (9)

where Λθt (z
θ
t ) is the likelihood function of goal θ at time

t, Λθt (·) = pdf(· | 0,Ξθt ), evaluated at the residual zθt , with
pdf(· | 0,Ξθt ) denoting the probability density function of
a Gaussian distribution with mean 0 and covariance Ξθt ,
bt|t−1(θ) is a probabilistic prediction of the goal at time t
before taking into account the newest measurement yt, and
ct =

∑
θ′∈Θ Λθ

′

t (zθ
′

t ) bt|t−1(θ′) is a normalization factor.

Remark 2: When taking into the consideration that the agent
may switch goals during the task, the transitions between
goals can be modeled as a Markov process with transition
probabilities πij = P(θ̂t = θj | θ̂t−1 = θi) and the goal
prediction bt|t−1(θ) is calculated according to

bt|t−1(θj) =

nθ∑
i=1

(
bt−1|t−1(θi)πij

)
. (10)

In this paper, we assume the agent has a constant goal, i.e.,
θ̂t ≡ θ̂. In this case, we have bt|t−1(θ) = bt−1|t−1(θ) for all
θ ∈ Θ and (9) reduces to

bt|t(θ) = c−1
t Λθt (z

θ
t ) bt−1|t−1(θ). (11)

B. Cost-effective sensing

We use ut = 1 to denote a sensing action (i.e., to take
a measurement) at time t, and use ut = 0 to denote not to
take a measurement at t. Note that the equations (8) and (11)
correspond to the hybrid Kalman filtering algorithm where a
measurement yt is taken at every time instant t. To account
for time instants where measurements are not taken (i.e., with
ut = 0), we modify the algorithm as follows:

x̂θt|t =

{
x̂θt|t−1 + Lθt (yt − g(x̂θt|t−1)), if ut = 1,

x̂θt|t−1, if ut = 0,
(12a)

Σθt|t =

{
(I − LθtCθt )Σθt|t−1, if ut = 1,

Σθt|t−1, if ut = 0,
(12b)

bt|t(θ) =

{ 1
ct

Λθt (yt − g(x̂θt|t−1)) bt−1|t−1(θ), if ut = 1,

bt−1|t−1(θ), if ut = 0,
(12c)

where x̂θt|t−1 = fθt−1(x̂θt−1|t−1) and Σθt|t−1 =

Aθt−1Σθt−1|t−1(Aθt−1)> + W θ are the a-priori state and
covariance estimates, respectively, and Lθt is the Kalman
gain computed as

Lθt = Σθt|t−1(Cθt )>(Cθt Σθt|t−1(Cθt )> + V θ)−1. (13)

The above modified algorithm resembles equations (8) and
(11) for the case of taking a measurement (ut = 1) and
sets the “a-posteriori” estimates x̂θt|t, Σθt|t, and bt|t(θ) to
their a-priori values x̂θt|t−1, Σθt|t−1, and bt−1|t−1(θ) if a
measurement is not taken (ut = 0).

We assume a constant cost associated with each sensing
action, wa > 0. Our objective is to minimize the sensing cost
while ensuring a fast, accurate, and reliable goal inference. In
particular, we use the information entropy of bt|t to quantify
uncertainty in our goal inference,

H(bt|t) = −
∑
θ∈Θ

bt|t(θ) log
(
bt|t(θ)

)
. (14)

Recall that bt|t is a probability distribution on the space of
possible goals, Θ, describing our a-posteriori beliefs in each
goal θ ∈ Θ. In general, a higher entropy H(bt|t) represents



a higher degree of uncertainty in the goal inference [17].
For instance, when we are 100% certain about the goal
(i.e., bt|t(θ′) = 1 for some θ′ ∈ Θ), the entropy H(bt|t)
attains its minimum value 0. In contrast, when we have equal
beliefs in every goal (i.e., bt|t is a uniform distribution on
Θ), H(bt|t) is maximized. Therefore, minimizing uncertainty
in the goal inference can be expressed as minimizing the
entropy H(bt|t). In particular, to optimize a trade-off between
inference uncertainty and sensing cost, we consider the
following objective function

ϕt(ut) = whHut(bt|t) + waut, (15)

where wh > 0 is a weighting factor and the subscript ut of
H(bt|t) represents its dependence on the value of ut, that is,
we aim to minimize a weighted sum of information entropy
and sensing action cost.

Remark 3: Considering the objective function (15) is equiv-
alent to comparing the “information gain” (the change in
information entropy from a-priori estimate to a-posteriori
estimate after taking a measurement),

IG(bt|t, ut) = Hut=0(bt|t)−Hut=1(bt|t), (16)

and the sensing cost wa to determine whether it is worth
taking a sensing action ut = 1. When the weighted informa-
tion gain whIG(bt|t, ut) is higher than the sensing cost wa,
minimizing (15) leads to ut = 1, and vice versa. Specifically,
if whIG(bt|t, ut) = whHut=0(bt|t) − whHut=1(bt|t) ≥ wa,
then ϕt(ut = 0) = whHut=0(bt|t) ≥ whHut=1(bt|t)+wa =
ϕt(ut = 1), i.e., ut = 1 corresponds to a smaller value of
the objective function (15).

Note that the belief distribution bt|t, computed according
to (12c), depends not only on the sensing decision ut, but
also on the received value of measurement, yt, for ut = 1.
Consequently, the objective function (15) also depends on yt.
Recall that we model yt as a random variable in (6b) to for-
mulate our hybrid Kalman filtering-based algorithm above.
In this case, before a measurement yt is actually received,
(15) can be considered as a random variable (related to yt)
the distribution of which depends on ut.

C. Model predictive approach
Our proposed cost-effective sensing strategy for goal in-

ference is based on the model predictive control framework.
Specifically, at each time instant t, we solve the following
optimization problem:

min
ut={ut|t,...,ut+N|t}

J(ut, bt−1|t−1), (17)

where the cost index J is

J(ut, bt−1|t−1) = E

[
N∑
τ=0

ϕt+τ (ut+τ )

∣∣∣∣∣ut, bt−1|t−1

]
(18)

= whE

[
N∑
τ=0

H(bt+τ |t+τ )

∣∣∣∣∣ut, bt−1|t−1

]
+ wa

N∑
τ=0

ut+τ |t.

In (17) and (18), each ut+τ |t ∈ {0, 1}, τ = 0, . . . , N , is a
predicted sensing decision for the future time t+τ (predicted
at the current time t) and is an optimization variable, bt−1|t−1

is the previous belief distribution and is a known constant at

t, and E
[
·
∣∣ut, bt−1|t−1

]
denotes a conditional expectation

conditioned on given values of ut and bt−1|t−1. We consider
the expected value because, as discussed above, the objective
function depends on the realized values of measurements
yt+τ over the prediction horizon, which have randomness.
The solution to (17) is an optimal sequence of predicted
sensing decisions, u∗t = {u∗t|t, . . . , u

∗
t+N |t}. We then decide

whether to take a measurement at the current time t accord-
ing to the value of u∗t|t, i.e., we determine the current sensing
decision as ut = u∗t|t.

Exactly and analytically evaluating E
[∑N

τ=0H(bt+τ |t+τ )∣∣ut, bt−1|t−1

]
involves integration of multivariate distri-

bution and is computationally difficult. Therefore, we
adopt a scenario method (also called Monte-Carlo method)
to approximate the expected value. Specifically, for
each θ ∈ Θ, we randomly generate ns scenarios,{

(xθ,it ,wθ,i
t ,vθ,it )

}ns
i=1

. Each scenario (xθ,it ,wθ,i
t ,vθ,it ) is a

state xθ,it ∼ N (x̂θt|t−1,Σ
θ
t|t−1), a sequence of process dis-

turbances wθ,i
t = {wθ,it , . . . , wθ,it+N−1} ∼ N (0,W θ), and a

sequence of measurement noises vθ,it = {vθ,it , . . . , vθ,it+N} ∼
N (0, V θ). Each scenario determines the sequence of mea-
surement values {yθ,it , . . . , yθ,it+N} through iteration of (6).
Then, for any given sequence of sensing decisions ut, we
compute a corresponding sequence of belief distributions
bt+τ |t+τ using (12) and entropies H(bt+τ |t+τ ) using (14).
Finally, we approximate the expected cumulative entropy
according to

E

[
N∑
τ=0

H(bt+τ |t+τ )

∣∣∣∣∣ut, bt−1|t−1

]
≈
∑
θ∈Θ

bt−1|t−1(θ) ·

·

(
1

ns

ns∑
i=1

[
N∑
τ=0

H(bt+τ |t+τ )
∣∣ut, (xθ,it ,wθ,i

t ,vθ,it )

])
, (19)

where H(bt+τ |t+τ ) |ut, (xθ,it ,wθ,i
t ,vθ,it ) denotes the pre-

dicted entropy at time t + τ corresponding to decision
sequence ut and scenario (xθ,it ,wθ,i

t ,vθ,it ), computed using
the procedure described above.

Computational feasibility. For any given ut, evaluation of
(18), with the first term approximated using the scenario
method as (19), involves calculations that are fully vector-
izable/parallelizable. Then, the optimization problem (17)
reduces to evaluations of (18) for all decision candidates
ut ∈ {0, 1}N+1 and selection of the one corresponding to
the smallest (18) value, which is real-time feasible.

IV. EXPERIMENT DESIGN

A. Goal-oriented task

We evaluate the proposed cost-effective sensing approach
for goal inference in a human-robot collaboration (HRC)
task. We consider a setting where an autonomous robot
collaborates with a robotic manipulator that is teleoperated
by a human (see Fig. 1). We assume that both the au-
tonomous robot and the human are tasked with grasping,
inspecting, and moving objects on a table. In order to ensure
effective collaboration, the autonomous robot needs to infer
the human operator’s goal (i.e., the object to grasp) to
inform its motion planning and avoid potential conflicts. The



considered robotic manipulator has 4 degrees of freedom,
x = (θ1, . . . , θ4), where θi denotes the angle of the ith joint.
The manipulator end-effector’s position in the world frame,
y = (xe, ye, ze), is assumed to be measurable to infer the
human’s goal. In implementing our approach, we use Chomp
(a model-based motion optimizer [18]) to model the closed-
loop dynamics (4) of the robotic manipulator, and use the
optimal trajectories corresponding to each goal obtained via
Chomp as the nominal trajectories ξθ,nom.

Remark 4: We have chosen to consider such a HRC task
for evaluating our approach because: 1) goal inference is an
essential component in HRC, 2) well-tuned goal inference
baseline methods for such a task are available, and 3) a
sensing action in such a task may entail a considerable
amount of computation due to 3D image processing (assum-
ing the primary sensor is a 3D camera) and high-DOF state
estimation. Note, however, that computational cost is only
one type of sensing costs. Tasks that involve other types of
sensing costs have been exemplified in Section I, to which
our approach can also be applied.

B. Independent variable

The independent variable is the implementation of dif-
ferent goal inference algorithms. In addition to our Goal
Inference approach based on Hybrid Kalman Filtering with
Cost-Effective sensing (HKF-CE-GI), we consider two other
baselines:

Bayesian-GI. The first baseline algorithm is the Bayesian
Goal Inference algorithm [5], [7] that exploits the Boltzmann
noisily-rational behavioral model [19]. In Bayesian-GI, the
agent’s goal is inferred according to:

θ∗ = arg max
θ∈Θ

P(ξt|θ)P0(θ), (20a)

P(ξt|θ) =
exp(−Cθ(ξt))

∫
ξ̃xt→xθ

exp(−Cθ(ξ̃xt→xθ )) dξ̃xt→xθ∫
ξ̃x0→xθ

exp(−Cθ(ξ̃x0→xθ )) dξ̃x0→xθ
, (20b)

where P0(θ) is a prior distribution over Θ, Cθ is a goal-
conditioned cost function that drives the agent to reach the
goal, ξ̃t denotes the observed agent’s trajectory at t, ξ̃xi→xf
denotes a sampled trajectory from state xi to state xf , and
xθ denotes the state of goal θ. The integrals over trajectories
can be approximated using Laplace’s method, with which
(20b) reduces to

P(ξt|θ) =
exp(−Cθ(ξx0→xt)− Cθ(ξ∗xt→xθ ))

exp(−Cθ(ξ∗x0→xθ ))
, (21)

where ξ∗x0→xθ denotes the optimal trajectory from x0 to xθ
with resp. to Cθ and can be computed using a motion planner.

Remark 5: The Boltzmann model assumes that the agent
chooses her trajectory ξ with a probability proportional to its
exponential cost. Consequently, the more ξ is deviated from
the optimal trajectory (in terms of the cost), the less likely
the agent is choosing ξ. This assumption agrees with the as-
sumption behind the stochastic model (6) based on which our
goal inference approach based on hybrid Kalman filtering is
developed: the more a trajectory is deviated from the nominal
trajectory ξθ,nom (which can be the optimal trajectory), the

less likely the agent is choosing that trajectory. Furthermore,
our belief update rule (11) implements a principle that is
analogous to Bayesian-GI: if the agent’s behavior is more
aligned with the nominal/optimal trajectory of a goal, then
that goal is more likely to be the intended one. However,
Bayesian-GI requires solving for the optimal trajectories
from the current state to all possible goals at every sample
time instant in order to update the belief distribution over the
goal set, which entails intensive computations and is thus not
as suitable as our hybrid Kalman filtering-based approach
for implementing our model predictive-based cost-effective
sensing strategy.

HKF-GI. The second baseline algorithm is an implemen-
tation of the Goal Inference approach based on Hybrid
Kalman Filtering with persistent measurement (i.e., taking
a measurement at every step), described in Section III-A.

C. Dependent measures
In order to validate our proposed approach and compare it

against baselines, we choose to evaluate the cost-effectiveness
and the computational feasibility of each goal inference
algorithm. Specifically, we count the time taken and the
number of measurements taken for each algorithm to build
up 90% confidence in the agent’s actual goal (bt|t(θ∗) =

P(θ̂ = θ∗ |yt) ≥ 90%) for evaluating the cost-effectiveness,
and count the average computation time to perform one belief
update for evaluating the computational feasibility.

V. RESULTS AND ANALYSIS

A. User studies
We conduct our user study on a simulated robotic manipu-

lator developed in [20]. In this study, the robotic manipulator
is controlled by a human operator via a joystick to grasp one
of the four objects on the table (see Fig. 2(a)). The solid lines
show the end-effector’s nominal trajectories corresponding to
each goal obtained from Chomp. We let the human control
the manipulator to reach her intended goal and record the
end-effector’s entire trajectory during this process (by taking
a position measurement at every sample time instant with
a sampling period of 0.2[s]). We then replay this trajectory
when evaluating each goal inference algorithm, to eliminate
the effect of trajectory variations.

Fig. 2(b) and (c) show the time histories of the beliefs in
each goal and of the sensing decision (i.e., whether or not to
take a measurement at each sample time instant) using our
proposed HKF-CE-GI algorithm. Fig. 2(d) and (e) show the
time histories of the beliefs in each goal using HKF-GI and
using Bayesian-GI, respectively. It can be seen that all three
algorithms accurately predict the human operator’s intended
goal with similar inference speeds. Note that our HKF-CE-GI
algorithm did not take any measurements for t ≤ 1.2[s] and
t ≥ 4.2[s]. This is because our algorithm predicted that 1)
little information about the human operator’s intended goal
could be gained from measurements at the initial stage of the
manipulator’s motion, and 2) little more information could
be gained from measurements at the terminal stage (because
we had already built up a high confidence in the intended
goal), which are also verified in Fig. 2(d) and (e): the beliefs
changed only slightly from their initial values for t ≤ 1.2[s]



(a) (b) (c) (d) (e)

Fig. 2: (a): Manipulator end-effector’s nominal trajectories corresponding to each goal (solid lines) and a fully-measured sample trajectory
of a human operator for reaching her intended goal (red dotted line). (b): Time-history of the beliefs in each goal using HKF-CE-GI. (c):
Time-history of the sensing decision using HKF-CE-GI. (d): Time-history of the beliefs in each goal using HFK-GI. (e): Time-history of
the beliefs in each goal using Bayesian-GI.

even though HKF-GI and Bayesian-GI took measurements
at every sample time instant, and had almost converged at
t = 4.2[s], which caused any measurements for t ≥ 4.2[s]
less valuable.

Fig. 3: Evaluation results for different goal set sizes. (a): Average
t90. (b): Average number of measurements taken during the entire
process. (c): Average computation time for one belief distribution
update. The black lines denote the standard deviations.

B. Evaluations
We quantitatively evaluate our HKF-CE-GI algorithm

against baselines. Before evaluation, we randomly generate
20 goals. For each goal, we let a human operator control
the manipulator to reach the goal and record the end-
effector’s trajectory with a sampling period of 0.2[s]. During
evaluation, we sample a subset of the generated goals as
the goal set, randomly select a goal as the “actual goal,”
and replay the corresponding recorded trajectory. Fig. 3
shows the evaluation results for different goal set sizes.
Specifically, we show the average t90 (the time taken to
build up 90% confidence) in Fig. 3(a), the average number
of measurements taken during the entire inference process
in Fig. 3(b), and the average computation time for one
belief update in Fig. 3(c). The numbers are calculated using
statistics from 40 trials (the goal set and actual goal are
re-sampled for each trial). It can be seen that in all cases,
HKF-CE-GI achieves similar t90 performance compared with
the baselines but takes significantly less measurements. With
regard to computational feasibility, HKF-GI takes negligible
computation times to perform belief updates thanks to the
high computational efficiency of Kalman filtering, while
HKF-CE-GI takes slightly more computation times than
Bayesian-GI. Note that the computations of HKF-CE-GI
are for predicting the information gain and optimizing the
sensing decisions to achieve cost-effective sensing, which
are not attainable by HKF-GI and Bayesian-GI. We also note
that the computation times of HKF-CE-GI can be reduced
by exploiting parallel computation.

C. Robustness to sub-optimal behaviors
We aim to evaluate the robustness of HKF-CE-GI to

sub-optimal behaviors. Because it is difficult to control

real human’s sub-optimal behaviors, we train a simulated
human to perform the task using the reinforcement learning
approach in [21] and use controlled perturbations to model
sub-optimal behaviors. The evaluation procedure is similar as
before except that the actions from the simulated human are
subject to perturbations sampled from N (0, λI4×4), where λ
characterizes the perturbation level. Fig. 4 shows the average
t90 and average number of measurements taken of 40 trials
under two different perturbation levels. It can be seen that
HKF-CE-GI outperforms the baselines in terms of cost-
effectiveness for both perturbation levels.

Fig. 4: Evaluation results with simulated human subject to sub-
optimal behaviors. (a-1) and (a-2): Average t90 for λ = 0.1 and
λ = 1. (b-1) and (b-2): Average number of measurements taken
during the inference process for λ = 0.1 and λ = 1. The black
lines denote the standard deviations.

VI. CONCLUSION

Goal inference is an important problem for a variety
of applications that involve goal-oriented agents. In this
work, we advocated that a sensible trade-off between the
information gained from measurements and the cost associ-
ated with sensing actions should be considered in situations
where sensing is associated with high cost. We cast the
goal inference problem in a goal-oriented task as a hybrid
estimation problem and developed a hybrid Kalman filtering-
based algorithm for goal inference. We then exploited the
model predictive control framework to define a cost-effective
sensing strategy. Our evaluation showed that, compared to
baselines, our approach takes a considerably reduced number
of measurements while not impairing the inference speed,
accuracy, and reliability.
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